基于多视角时间序列图像的植物叶片分割与特征提取
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.6041/j.issn.1000-1298.2022.01.028

基于多视角时间序列图像的植物叶片分割与特征提取

引用
为了解决多种类植物在生长过程中不同时间点动态变化表型参数提取困难问题,提出了一种基于多视角时间序列图像和深度卷积神经网络Mask-RCNN的植物茎叶实例分割方法,在拟南芥、玉米和酸浆属3种代表性植物上进行了实验.结果 表明,训练得到的基于Mask-RCNN的植物分割模型对在不同生长时期的植物茎叶的识别精度(mAP0.5)大部分在70.0%以上,最高可以达到87.5%,模型通用性较好.同时,针对茎叶遮挡问题提出的基于多视角图像的跟踪算法,可进一步提高植物茎叶参数提取的准确率.本文提出的以茎叶为代表的植物器官分割和特征提取方法具有性能高效、成本低、通用性和扩展性好的优势,可为不同场景下植物全生长过程中的多表型参数提取提供参考.

植物表型;实例分割;特征提取;Mask-RCNN;叶片计数;时间序列图像

53

TP391.4(计算技术、计算机技术)

国家自然科学基金;重庆市自然科学基金面上项目

2022-03-09(万方平台首次上网日期,不代表论文的发表时间)

共8页

253-260

相关文献
评论
暂无封面信息
查看本期封面目录

农业机械学报

1000-1298

11-1964/S

53

2022,53(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn