基于IM-SSD+ACO算法的整株大豆表型信息提取
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.6041/j.issn.1000-1298.2021.12.019

基于IM-SSD+ACO算法的整株大豆表型信息提取

引用
为了减少检测整株大豆豆荚及茎秆时相互遮挡对精度造成的影响,提出了一种基于卷积神经网络的大豆豆荚及茎秆表型信息检测方法,根据大豆植株的生长特征和卷积网络的特点,对单次多框检测器(Single shot muhibox detector,SSD)进行了改进.与传统SSD相比,改进SSD(IM-SSD)具有更好的抗干扰能力和自学习能力.首先,通过大豆植株图像采集平台获取收获期的大豆植株图像,建立大豆植株RGB空间图像数据集,将数据集分为训练集、测试集和验证集,对训练集进行颜色变换、图像平移、旋转和缩放等方式实现数据的扩增,提高网络的泛化能力.其次,提出一种针对大豆植株图像中豆荚和茎秆的标注方法,仅对未被遮挡的部分进行标注,目的 是降低遮挡产生的误判.IM-SSD是在传统SSD结构的基础上增加2个残差层,使用低层特征图融合到高层特征图来增强对小目标的检测能力,提高网络的识别率,输入图像尺寸为600像素×300像素,降低压缩变形带来的影响.对比试验结果表明,IM-SSD的平均精度比SSD300高7.79个百分点,比SSD512高3.83个百分点.由于卷积神经网络获得的大豆植株茎秆定位是分段的,不能体现茎秆的真实特征,提出了一种基于蚁群优化(Ant colony optimization,ACO)算法的大豆植株茎秆提取方法,利用ACO结合IM-SSD的结果提取完整的大豆植株茎秆.最后,通过豆荚定位和大豆植株茎秆提取获得了大豆植株的部分表型信息,包括全株荚数、株高、有效分枝数、主茎与株型.

大豆植株;目标检测;卷积神经网络;蚁群优化

52

TP391.4(计算技术、计算机技术)

国家重点研发计划;国家重点研发计划

2022-03-11(万方平台首次上网日期,不代表论文的发表时间)

共9页

182-190

相关文献
评论
暂无封面信息
查看本期封面目录

农业机械学报

1000-1298

11-1964/S

52

2021,52(12)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn