基于Attention_DenseCNN的水稻问答系统问句分类
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.6041/j.issn.1000-1298.2021.07.025

基于Attention_DenseCNN的水稻问答系统问句分类

引用
为了解决"中国农技推广APP"问答社区中水稻提问数据快速自动分类的问题,提出一种基于Attention_DenseCNN的水稻文本分类方法.根据水稻文本具备的特征,采用Word2vec方法对文本数据进行处理与分析,并结合农业分词词典对文本数据进行向量化处理,采用Word2vec方法能够有效地解决文本的高维性和稀疏性问题.对卷积神经网络(CNN)上下游卷积块之间建立一条稠密的链接,并结合注意力机制(Attention),使文本中的关键词特征得以充分体现,使文本分类模型具有更好的文本特征提取精度,从而提高了分类精确率.试验表明:基于Attention_DenseCNN的水稻问句分类模型可以提高文本特征的利用率、减少特征丢失,能够快速、准确地对水稻问句文本进行自动分类,其分类精确率及F1值分别为95.6%和94.9%,与其他7种神经网络问句分类方法相比,分类效果明显提升.

水稻问句分类;自然语言处理;密集连接卷积神经网络;注意力机制

52

TP183(自动化基础理论)

国家重点研发计划项目;江苏大学农业装备学部项目;内蒙古民族大学科学研究基金项目

2021-08-17(万方平台首次上网日期,不代表论文的发表时间)

共7页

237-243

相关文献
评论
暂无封面信息
查看本期封面目录

农业机械学报

1000-1298

11-1964/S

52

2021,52(7)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn