10.6041/j.issn.1000-1298.2020.10.003
基于特征点邻域Hough变换的水稻秧苗行检测
水稻秧苗行检测对于精准农业和自动导航至关重要,为此提出一种基于特征点邻域Hough变换的水稻秧苗行检测方法,该方法可以有效解决杂草密度分布、光照强度和秧苗行曲率变化等因素对秧苗行检测的影响.该方法主要包括3个步骤:水稻秧苗行图像数据库的建立、水稻秧苗特征点提取和秧苗行中心线识别.首先,在杂草萌发期建立水稻秧苗在不同光照条件(晴、阴天)、不同杂草密度分布和不同秧苗生长状况的水稻秧苗行图像数据库;然后,采用基于Faster RCNN网络的秧苗检测模型获得水稻秧苗的特征点,即预测结果的中心点;最后,采用提出的基于特征点邻域的Hough变换算法识别秧苗行中心线.实验表明,本文方法对测试集秧苗行平均识别准确率达到92%,对不同杂草密度分布的秧苗行平均识别精度小于0.5°,对孤立的杂草噪声和光照变化不敏感,对曲率较大的秧苗行也能准确识别,具有较好的鲁棒性和识别精度.
水稻秧苗行检测、图像数据库、Faster RCNN网络、特征点邻域、Hough变换
51
TP391.4(计算技术、计算机技术)
国家重点研发计划项目;中国农业科学院基本科研业务费项目
2020-11-18(万方平台首次上网日期,不代表论文的发表时间)
共8页
18-25