基于ISRCDKF的移动机器人同时定位与建图研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.6041/j.issn.1000-1298.2019.11.045

基于ISRCDKF的移动机器人同时定位与建图研究

引用
为解决移动机器人在同时定位和建图(Simultaneous localization and mapping,SLAM)技术中普遍存在状态精度不高、稳定性差、计算复杂等问题,提出一种基于迭代平方根中心差分卡尔曼滤波(Iterated square root centraldifference Kalman filter,ISRCDKF)的SLAM自主定位算法,以满足SLAM过程中的实时性、准确性等要求.该算法使用中心差分变换处理SLAM的非线性问题,避免了泰勒公式展开中雅可比矩阵复杂运算;同时在滤波更新过程中,通过直接传递协方差矩阵的平方根因子减少算法的复杂度;在迭代观测更新过程中,使用列文伯格-马夸尔特(Levenberg-Marquardt,L-M)优化方法引入调节参数,实时修正协方差矩阵,达到提高算法精度、增强稳定性的目的.仿真结果表明,在相同的数据模型和噪声环境下,本文提出的ISRCDKF-SLAM算法与基于扩展卡尔曼滤波(Extended Kalman filter,EKF)的SLAM算法、无迹卡尔曼滤波(Unscented Kalman filter,UKF)的SLAM算法和容积卡尔曼滤波(Cubature Kalman filter,CKF)的SLAM算法相比,均方根误差分别降低了47.3%、32.7%和25.0%;与相同计算复杂度的UKF-SLAM算法和CKF-SLAM算法相比,新算法的运行时间分别减少了15.1%和10.8%.将新算法嵌入到移动机器人平台进行现场实验验证,进一步证明了该算法的实用性和有效性.

移动机器人、同时定位和建图、迭代平方根中心差分卡尔曼滤波、均方根误差

50

TP242.6(自动化技术及设备)

国家自然科学基金项目;内蒙古自然科学基金项目

2020-04-24(万方平台首次上网日期,不代表论文的发表时间)

共10页

394-403

相关文献
评论
暂无封面信息
查看本期封面目录

农业机械学报

1000-1298

11-1964/S

50

2019,50(11)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn