10.6041/j.issn.1000-1298.2019.11.023
基于高光谱定量反演模型的污水综合水质评价
为改善高光谱遥感对污水水质信息状况定量反演模型的预测评价效果,以陕西某污水处理厂采集的污水样品为研究对象,采用主成分分析法(Principal component analysis,PCA)对污水水质进行综合评价,获取水质评价的综合评价因子,同时利用ASD FieldSpec 3型高光谱仪获取污水的原始光谱,经过数据预处理和不同数学变换后,共获取了4种光谱指标:平滑后光谱反射率(SG)、倒数之对数(LR)、标准正态化(SNV)和去包络线(CR).分别采用偏最小二乘回归法(Partial least squares regression,PLSR)、逐步回归法(Stepwise regression,SR)、极限学习机法(Extreme learning machine,ELM)构建了基于水质综合评价因子的高光谱水质反演模型,并对反演结果进行精度验证与比较.结果 表明,本组水样的平滑后光谱数据和经过标准正态化变换的光谱数据建模具有较好的建模效果,其建模的预测RPD均在2.5以上;在3种模型中,PLSR模型和ELM模型均具备很好的建模预测效果;逐步回归法的建模效果较PLSR模型和ELM模型有所下降,但是其SG-SR、SNV-SR模型的R2c均在0.8以上、R2p均在0.85以上,RPD均在3.0以上,证明其仍拥有很好的反演预测效果,且进行了特征波段的优选,实现了对模型的优化;SNV-SR-ELM(R2c=0.956,R2p=0.954,RMSE=0.500,RPD=4.651)为最佳模型,SNV-SR-ELM模型的建立为高光谱反演水质模型的优化、污水水质的快速监测和综合评价提供了途径.
水质综合评价、高光谱、预处理、偏最小二乘回归、极限学习机
50
X524(水体污染及其防治)
国家重点研发计划项目;国家自然科学基金项目
2020-04-24(万方平台首次上网日期,不代表论文的发表时间)
共10页
200-209