基于局部保留降维卷积神经网络的高光谱图像分类算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.6041/j.issn.1000-1298.2019.03.014

基于局部保留降维卷积神经网络的高光谱图像分类算法

引用
为提高高光谱遥感图像的分类精度,通过局部保留判别式分析与深度卷积神经网络(DCNN)算法,提出了基于局部保留降维卷积神经网络的高光谱图像分类算法.首先,用局部保留判别式分析对高光谱数据降维,再用二维Gabor滤波器对降维后的高光谱数据进行滤波,生成空间隧道信息;其次,用卷积神经网络对原始高光谱数据进行特征提取,生成光谱隧道信息;再次,融合空间隧道信息与光谱隧道信息,形成空间-光谱特征信息,并将其输入到深度卷积神经网络,提取更加有效的特征;最后,采用双重优选分类器对最终提取的特征进行分类.将本文方法与CNN、PCA-SVM、CD-CNN和CNN-PPF等算法在Indian Pines、University of Pavia高光谱遥感数据库上进行性能比较.在Indian Pines、University of Pavia数据库上,本文算法识别的整体精度比传统CNN方法的整体精度分别高3.81个百分点与6.62个百分点.实验结果表明,本文算法无论在分类精度还是Kappa系数都优于另外4种算法.

高光谱图像、Gabor特征、局部保留降维、空-谱结合、DCNN深度学习、双重优选分类器

50

TP391.9(计算技术、计算机技术)

甘肃省高等学校科研项目2016A-004;甘肃省科技计划项目18JR3RA097

2019-05-06(万方平台首次上网日期,不代表论文的发表时间)

共8页

136-143

相关文献
评论
暂无封面信息
查看本期封面目录

农业机械学报

1000-1298

11-1964/S

50

2019,50(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn