基于灰度-梯度特征的改进FCM土壤孔隙辨识方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.6041/j.issn.1000-1298.2018.03.033

基于灰度-梯度特征的改进FCM土壤孔隙辨识方法

引用
土壤孔隙的拓扑结构决定了土壤水分保持和传导能力,对土壤生态过程与功能具有重要影响,但现有土壤孔隙辨识方法存在孔隙边界判别不准确和运行效率较低的问题.为解决这一问题,提出一种基于土壤CT图像灰度-梯度特征的改进模糊C均值(GFFCM)孔隙辨识方法.该方法利用拉普拉斯算子建立灰度-梯度二维特征矩阵,并结合土壤相关先验知识分区构造初始隶属度矩阵和确定聚类数目;然后,基于初始条件实现土壤结构的模糊划分;最后,运用孔隙辨识准则对模糊聚类结果进行优化,完成土壤孔隙结构的精准辨识.以非饱和土壤CT图像为应用对象验证孔隙辨识方法的性能,通过与传统FCM法、快速FCM法(FFCM)的比较,表明GFFCM法有效克服了传统FCM法在隶属度矩阵和聚类数目初始化的不足,解决了初始值制约辨识精确度的问题,在保证孔隙辨识精度的前提下具有较高的执行效率.

土壤孔隙、灰度-梯度、隶属度矩阵、模糊C均值方法、孔隙辨识准则

49

S152(土壤学)

国家自然科学基金项目41501283;中央高校基本科研业务费专项资金项目2015ZCQ-GX-04

2018-05-21(万方平台首次上网日期,不代表论文的发表时间)

共8页

279-286

相关文献
评论
暂无封面信息
查看本期封面目录

农业机械学报

1000-1298

11-1964/S

49

2018,49(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn