基于鱼群算法的极限学习机影像分类方法优化
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.6041/j.issn.1000-1298.2017.10.019

基于鱼群算法的极限学习机影像分类方法优化

引用
在传统极限学习机(ELM)研究的基础上,考虑到传统ELM参数的不确定会导致整体分类精度下降,利用仿生鱼群算法(AF)对ELM的小波核参数和正则化参数进行寻优,并构造参数优化后的小波ELM影像分类模型(AF-ELM).通过实验比较了该算法与人工神经网路(ANN)、支持向量机(SVM)、极限学习机(ELM)等标准分类器在遥感影像分类上的精度与速度差异,并且与ELM多项式核、RBF核分类算法进行比较分析,验证了AF-ELM在分类速度和精度上的优越性.实验结果表明,AF-ELM分类方法分类速度较快,精度较高,均优于其他分类方法.能较好地应用于遥感影像上各类地物要素的自动提取.

极限学习机、鱼群算法、影像分类、小波核函数、遥感影像、优化

48

TP79;F301.2(遥感技术)

国土资源部公益性行业科研专项201211011;上海市科学技术委员会科研计划项目13231203602

2017-11-22(万方平台首次上网日期,不代表论文的发表时间)

共9页

156-164

相关文献
评论
暂无封面信息
查看本期封面目录

农业机械学报

1000-1298

11-1964/S

48

2017,48(10)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn