基于动态集成的黄瓜叶部病害识别方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.6041/j.issn.1000-1298.2017.09.006

基于动态集成的黄瓜叶部病害识别方法

引用
对作物病害类型的准确识别是病害防治的前提.为提高病害识别的准确度,以黄瓜叶部病害识别为例,提出一种基于动态集成的作物叶部病害种类的识别方法.首先利用图像分块策略提取病害图像的75维颜色统计特征,然后采用不一致度量方法对构建的10个BP神经网络单分类器进行差异性度量,并按照差异性大小进行排序,最后根据分类器的可信度,动态选择差异性大的分类器子集对病害图像进行集成识别.在由512幅白粉病、霜霉病、灰霉病和正常叶片4类黄瓜叶片组织图像构成的测试集上,所提方法的识别错误率为3.32%,分别比BP神经网络、SVM、Bagging、AdaBoost算法降低了1.37个百分点、1.56个百分点、1.76个百分点、0.78个百分点.试验结果表明:所提方法能够实现黄瓜叶部病害种类的准确识别,可为其它作物病害的识别提供借鉴.

黄瓜、叶部病害、图像识别、集成学习、差异性度量、动态选择

48

S431.9;TP391.4(病虫害及其防治)

国家自然科学基金项目61403035、71301011;北京市自然科学基金项目9152009

2017-11-14(万方平台首次上网日期,不代表论文的发表时间)

共7页

46-52

相关文献
评论
暂无封面信息
查看本期封面目录

农业机械学报

1000-1298

11-1964/S

48

2017,48(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn