基于显著性检测的黄瓜叶部病害图像分割算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.6041/j.issn.1000-1298.2016.09.002

基于显著性检测的黄瓜叶部病害图像分割算法

引用
针对复杂背景下黄瓜叶部病害分割精度不高的问题,提出了一种基于显著性检测的黄瓜叶部病害图像分割算法.首先利用超像素将黄瓜图像分块,获取黄瓜叶片的边缘,并提出了一种超像素间权重计算方法和显著种子选取方法;然后通过流形排序计算显著图,对得到的显著图进行阈值分割,得到二值图像;再将二值图像与原图像进行掩码运算,得到黄瓜病害叶片;最后利用超绿特征和数学形态学对病害叶片进行分割得到病斑.对常见的黄瓜病害(白粉病、褐斑病、霜霉病、炭疽病)图像进行测试,结果表明该算法与Otsu算法和k-means算法相比,有效解决了冗余分割问题,错分率均在5%以内,算法平均执行时间均小于4 000 ms,分割效果更加精确,为后续构建黄瓜病害自动识别系统奠定了基础.

黄瓜、病害图像、显著性检测、流形排序、图像分割

47

TN911.73;S126

国家自然科学基金项目61502236、江苏省博士后科研资助计划项目1302038B和江苏省农业三新工程项目SXGC2014309

2016-11-01(万方平台首次上网日期,不代表论文的发表时间)

11-16

相关文献
评论
暂无封面信息
查看本期封面目录

农业机械学报

1000-1298

11-1964/S

47

2016,47(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn