10.6041/j.issn.1000-1298.2016.05.036
基于视觉显著性图的黄瓜霜霉病识别方法
为提高黄瓜霜霉病叶部病害机器自动识别的准确性和鲁棒性,提出了一种基于视觉显著性图的黄瓜叶部霜霉病识别方法.首先将图像从RGB色彩空间变换到HSV色彩空间中进行色彩修正,再变换回RGB空间利用R、G、B分量的线性组合生成视觉显著性图,最后通过对生成的视觉显著性图进行阈值分割以识别病害区域.利用从北京市北部郊区日光温室采集到的50幅具有典型霜霉病特征的黄瓜叶片原始图像进行实验,结果表明,该方法能较为准确地从叶部彩色图像中识别出霜霉病病斑区域,平均误分率为6.98%,优于K-means法(11.38%)和OTSU法(15.98%);平均运行时间0.661 4s,少于K-means法的1.424 9 s;运行时间的均方根误差为0.051 5 s,鲁棒性优于K-means硬聚类算法.
黄瓜、霜霉病、机器识别、视觉显著性图
47
TP391.4;S24(计算技术、计算机技术)
国家自然科学基金项目31271619
2016-06-30(万方平台首次上网日期,不代表论文的发表时间)
270-274