基于为害状色相多重分形的椪柑病虫害图像识别
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.6041/j.issn.1000-1298.2014.03.043

基于为害状色相多重分形的椪柑病虫害图像识别

引用
为自动识别椪柑病虫害,研究了以椪柑病虫害为害状多重分形谱特性参数为输入变量的小波神经网络病虫害识别方法.利用改进型分水岭算法提取椪柑病虫害为害状边界,对非连续的边界进行边界跟踪,将过分割区域进行区域合并,标记为害状边界,提取标记区域,生成病虫害为害状目标图像;对病虫害为害状目标图像0°~120°这一主要色相区域4等分,产生4幅色相二值图像;对二值图像进行多重分形分析,计算其标度不变区多重分形谱的高度及宽度;以此高度及宽度作为小波神经网络的输入,进行椪柑病虫害识别,5种病虫害的平均识别正确率为87%.试验结果表明:椪柑病虫害为害状的4对多重分形谱高度及宽度值较充分地反映了椪柑病虫害色相累计信息、分布信息及区间形状的典型特征,能用此方法进行椪柑病虫害机器识别.

椪柑、病虫害、图像识别、机器视觉、多重分形、小波神经网络

45

S126(农业物理学)

湖南省科技计划资助项目2011NK3005、2012NK4127

2014-04-30(万方平台首次上网日期,不代表论文的发表时间)

共6页

262-267

相关文献
评论
暂无封面信息
查看本期封面目录

农业机械学报

1000-1298

11-1964/S

45

2014,45(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn