基于PCA-SVM的棉花出苗期杂草类型识别
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.6041/j.issn.1000-1298.2012.09.034

基于PCA-SVM的棉花出苗期杂草类型识别

引用
为了实现棉田中不同类型杂草的机器视觉识别,提出基于主成分分析和支持向量机的棉花出苗期杂草识别方法.该方法通过提取棉田图像中棉花和杂草的颜色、形状、纹理等特征,并利用主成分分析(PCA)降低特征变量空间维数,结合支持向量机,实现对棉田杂草类型分类.通过120个棉花杂草测试样本分类试验结果发现,经PCA降维得到的前3个主成分分量能有效减少支持向量机的训练时间和提高分类正确率;通过对比发现前3个主成分分量与径向基核函数支持向量机相结合效果最好,其训练时间为91 ms,平均分类正确率达98.33%.

棉花、杂草识别、图像处理、主成分分析、支持向量机

43

TP391.41(计算技术、计算机技术)

农业部行业科技专项资助项目201203025;中国农业大学研究生科研创新专项资助项目2012YJ262

2012-12-17(万方平台首次上网日期,不代表论文的发表时间)

共7页

184-189,196

相关文献
评论
暂无封面信息
查看本期封面目录

农业机械学报

1000-1298

11-1964/S

43

2012,43(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn