水稻氮素机器视觉诊断最佳叶位和位点的选择研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1000-1298.2010.04.036

水稻氮素机器视觉诊断最佳叶位和位点的选择研究

引用
选用扫描仪获取水稻叶片的数字图像,通过比较第1和第3完全展开叶 (L1和L2) 颜色参量的空间分布,研究基于机器视觉技术的水稻氮素诊断的最佳叶位和位点选择.结果表明基于机器视觉的水稻氮素营养诊断是有理论依据的,能反映出叶片的营养状况; 选择B、b、b/(r+g)、b/r、b/g作为最优颜色特征参量;比较颜色特征参量对应的变异系数CV,得到低氮处理的CV明显高于正常氮素水平,同时CV随着叶位的增加而减小;不同位点的CV其叶尖和叶基的变化幅度较为接近,不同位点间差异不显著.初步研究选择第3完全展开叶作为水稻无损氮素诊断的最佳叶位.

水稻、氮素、机器视觉、叶位、位点、变异系数

41

S2(农业工程)

国家自然科学基金资助项目30571112;国家"863"高技术研究发展计划资助项目2006AA10Z204;浙江省科技计划项目2007C2308、2008C33008

2010-06-12(万方平台首次上网日期,不代表论文的发表时间)

共5页

179-183

相关文献
评论
暂无封面信息
查看本期封面目录

农业机械学报

1000-1298

11-1964/S

41

2010,41(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn