鲜枣品种和可溶性固形物含量近红外光谱检测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

鲜枣品种和可溶性固形物含量近红外光谱检测

引用
采用近红外光谱分析技术无损鉴别鲜枣品种和测定其可溶性固形物含量.对3个不同品种的鲜枣进行光谱分析,各获取30个样本数据.采用平滑法和多元散射校正方法对样本数据进行预处理,再用主成分分析法对光谱数据进行聚类分析并获得各主成分数据.将样本随机分成75个建模样本和15个预测样本,将建模样本的主成分数据作为BP神经网络的输入变量,鲜枣品种和可溶性固形物含量作为输出变量,建立3层人工神经网络鉴别模型,并用该模型对15个预测样本进行预测.结果表明,在阈值设定为±0.17的情况下该模型对预测集样本品种鉴别准确率达到100%,可溶性固形物含量预测值与实测值相对偏差小于10%.

鲜枣、近红外光谱、无损检测、主成分分析、BP神经网络

40

S123(农业物理学)

山西省科技攻关项目2007031109-2

2009-05-20(万方平台首次上网日期,不代表论文的发表时间)

共4页

139-142

相关文献
评论
暂无封面信息
查看本期封面目录

农业机械学报

1000-1298

11-1964/S

40

2009,40(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn