陶瓷材料电加工表面粗糙度的预测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1000-1298.2007.03.041

陶瓷材料电加工表面粗糙度的预测

引用
针对电加工工艺参数与性能指标的函数映射关系大多具有非线性的特征,提出了将BP神经网络引入电加工领域中.考虑到BP算法的不足,提出用遗传算法来优化BP神经网络的连接权值,设计了基于进化神经网络的学习算法,建立了陶瓷材料电加工表面粗糙度随工艺参数变化的预测模型.试验结果表明,该算法可以避免BP神经网络易陷入局部极小值等问题,预测精度高,相对误差在4%之内,进而验证了该模型的可靠性.

陶瓷、表面粗糙度、预测、进化神经网络、电火花线切割

38

TG661;TP183

2007-04-24(万方平台首次上网日期,不代表论文的发表时间)

共4页

164-167

相关文献
评论
暂无封面信息
查看本期封面目录

农业机械学报

1000-1298

11-1964/S

38

2007,38(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn