基于无人机多光谱影像的水稻氮营养监测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11975/j.issn.1002-6819.202302093

基于无人机多光谱影像的水稻氮营养监测

引用
探究消费级无人机多光谱影像对不同生态点、不同品种水稻氮营养监测建模精确度和普适度的影响,对于实现区域水稻氮营养精确管理与应用有重要意义.该研究分别在云南省西双版纳勐遮镇(供试品种:云粳 37)与重庆市北碚区(供试品种:极优 6135)2个试验点设置不同氮水平田间试验,利用大疆精灵 4多光谱无人机于水稻分蘖期、拔节期和抽穗期采集水稻冠层多光谱图像,采用凯氏定氮法测定水稻植株冠层氮含量(canopy nitrogen content,CNC)并计算地上部氮累积量(plant nitrogen accumulation,PNA);分别利用植被指数、偏最小二乘回归(partial least squares regression,PLSR)、随机森林(random forest,RF)、反向传播神经网络(back-propagation neural network,BPNN)对单一试验点、单品种和不同试验点、多品种水稻建立氮营养监测模型并探究模型的迁移能力.拔节期和抽穗期的模型精度较高(归一化植被指数NDVI或近红外归一化植被指数NNVI,R2 为0.68~0.88),而分蘖期的模型精度欠佳(NDVI,R2 为 0.53~0.79),且模型迁移能力均较差;通过RVI(ratio vegetation index)建立的单品种水稻全生育期地上部氮累积量监测的精度较高且迁移能力较好.基于PLSR、RF和BPNN构建的模型精度高于植被指数模型,其中基于RF的多品种全生育期冠层氮含量和地上部氮累积量监测模型精度最高,R2 分别为 0.84和 0.94,均方根误差分别为 0.28%和10.09 kg/hm2.研究结果可为无人机多光谱影像技术对不同生态点、不同品种的水稻全生育期氮营养监测提供理论依据和技术支持.

无人机、植被指数、机器学习、多光谱成像、氮营养监测、水稻

39

S147.2;S24(肥料学)

云南现代农业绿色关键技术创新与平台建设项目;国家自然科学基金

2023-10-13(万方平台首次上网日期,不代表论文的发表时间)

共11页

160-170

相关文献
评论
暂无封面信息
查看本期封面目录

农业工程学报

1002-6819

11-2047/S

39

2023,39(13)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn