基于改进MobileNetV3-Large的鸡蛋新鲜度识别模型
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11975/j.issn.1002-6819.2022.17.021

基于改进MobileNetV3-Large的鸡蛋新鲜度识别模型

引用
鸡蛋在运输贮存过程中一直伴随着品质的不断衰减,如何快速、准确地识别鸡蛋新鲜度是业界和学者们共同关注的话题.针对鸡蛋内部气室和蛋黄等新鲜度特征差异不显著的问题,该研究提出一种基于改进MobileNetV3-Large的轻量级鸡蛋新鲜度识别模型.首先在深度可分离卷积中引入动态卷积(Dynamic Convolution,DC)模块,改进后的深度可分离动态卷积模块能够为不同的鸡蛋图像动态生成卷积核参数,提高模型特征提取能力;其次在注意力模块中引入坐标注意力(Coordinate Attention,CA)模块,增强模型对位置信息的感知能力;最后采用3276张鸡蛋图像训练并测试改进的MobileNetV3-DA模型.试验结果表明,MobileNetV3-DA模型在测试集上的准确率为97.26%,分别比ResNet18、VGG19和ShuffleNetV2模型高5.19、0.84和5.91个百分点;模型参数量和计算量分别比MobileNetV3-Large减少1.03和78.64 M;在实际应用中,MobileNetV3-DA模型精确率、召回率和加权分数的平均值分别为95.95%、95.48%和97.82%,达到了理想的识别效果.改进的MobileNetV3-DA模型为鸡蛋供应链各环节进行鸡蛋新鲜度快速、准确识别提供了算法支持.

农产品、品质控制、鸡蛋新鲜度、MobileNetV3-DA、动态卷积、坐标注意力

38

TP391.41;TS253.7(计算技术、计算机技术)

现代农业产业技术体系北京市创新团队建设项目BAIC11-2022

2023-01-13(万方平台首次上网日期,不代表论文的发表时间)

共9页

196-204

相关文献
评论
暂无封面信息
查看本期封面目录

农业工程学报

1002-6819

11-2047/S

38

2022,38(17)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn