10.11975/j.issn.1002-6819.2022.17.016
基于通道特征金字塔的田间葡萄实时语义分割方法
复杂环境下葡萄的快速检测识别是智能采摘的关键步骤,为解决目前葡萄识别精度低和实时性差的问题,该研究提出一种轻量级葡萄实时语义分割模型(Grape Real-time Semantic Segmentation Model,GRSM).首先,利用通道特征金字塔(Channel-wise Feature Pyramid,CFP)模块进行特征提取,该模块通过1?3和3?1空洞卷积的跳跃连接,在减少模型参数量的同时提取葡萄图像的多尺度特征和上下文信息;然后,采用池化卷积融合结构完成下采样,增加可训练参数以减少信息损失;最后,利用跳跃连接融合多种特征恢复图像细节.试验结果表明:该研究所提出的模型在田间葡萄测试集上达到了78.8%的平均交并比,平均像素准确率为90.3%,处理速度达到68.56帧/s,网络结构大小仅为4.88 M.该模型具有较高分割识别精度和较好实时性,能满足葡萄采摘机器人对视觉识别系统的要求,为葡萄的智能化采摘提供了理论基础.
机器视觉、图像识别、语义分割、实时性、葡萄、CFP
38
S126(农业物理学)
江苏大学农业装备学部项目;江苏高校优势学科建设工程三期资助项目
2023-01-13(万方平台首次上网日期,不代表论文的发表时间)
共8页
150-157