采用改进YOLOv3算法检测青皮核桃
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11975/j.issn.1002-6819.2022.14.021

采用改进YOLOv3算法检测青皮核桃

引用
使用机器视觉对果实检测并进行估产是实现果园智能化管理的重要途径,针对自然环境下青皮核桃与叶片颜色差异小、核桃体积较小导致青皮核桃不易检出的问题,该研究提出一种基于改进YOLOv3的青皮核桃视觉检测方法.依据数据集特征进行数据增强,引入Mixup数据增强方法,使模型从更深的维度学习核桃特征;针对核桃单种类目标检测比较不同预训练模型,选择精度提升更明显的Microsoft Common Objects in Context(COCO)数据集预训练模型;依据标注框尺寸统计对锚框进行调整,避免锚框集中,提升模型多尺度优势.在消融试验中,前期改进将平均精度均值提升至93.30%,在此基础上,引入MobilNet-v3骨干网络替换YOLOv3算法中原始骨干网络,提升模型检测能力及轻量化.试验表明,基于改进YOLOv3的青皮核桃检测平均精度均值为94.52%,超越YOLOv3其他2个骨干网络和Faster RCNN-ResNet-50网络.改进模型大小为88.6 M,检测速度为31帧/s,检测速度是Faster RCNN-ResNet-50网络的3倍,可以满足青皮核桃实时准确检测需求.该方法可为核桃果园智能化管理中的估产、采收规划等提供技术支撑,也可为近背景颜色的小果实实时准确检测提供思路.

图像处理、目标检测、算法、青皮核桃、YOLOv3

38

S126(农业物理学)

河北省重点研发计划项目;河北省博士在读研究生创新能力培养资助项目

2022-10-24(万方平台首次上网日期,不代表论文的发表时间)

共8页

183-190

相关文献
评论
暂无封面信息
查看本期封面目录

农业工程学报

1002-6819

11-2047/S

38

2022,38(14)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn