基于无人机图像和贝叶斯CSRNet模型的粘连云杉计数
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11975/j.issn.1002-6819.2022.14.006

基于无人机图像和贝叶斯CSRNet模型的粘连云杉计数

引用
自动、准确且快速地统计苗木数量是实现苗圃高效管理的重要基础.针对现有苗木计数方法准确率较低且无法准确统计粘连苗木等问题,该研究提出了一种基于贝叶斯CSRNet模型的云杉计数模型.该模型以对粘连苗木具有良好稳定性的CSRNet模型为基础,引入贝叶斯损失函数,以人工标注的点标签数据作为监督信号.以1176幅云杉图像训练贝叶斯CSRNet模型,并通过166幅测试集云杉图像进行测试.结果表明,贝叶斯CSRNet模型可以准确、快速地统计无人机航拍图像内的云杉,对测试集图像内云杉的平均计数准确率(Mean Counting Accuracy,MCA)、平均绝对误差(Mean Absolute Error,MAE)和均方误差(Mean Square Error,MSE)分别为99.19%、1.42和2.80.单幅云杉图像耗时仅为248 ms,模型大小为62 Mb.对比YOLOv3模型、改进YOLOv3模型、CSRNet模型和贝叶斯CSRNet模型对166幅测试集云杉图像的计数结果,贝叶斯CSRNet模型的MCA分别比YOLOv3模型、改进YOLOv3模型、CSRNet模型高3.43%、1.44%和1.13%;MAE分别低6.8、2.9和1.67;MSE分别低101.74、23.48和8.57.在MCT(Mean Counting Time)和MS(Model Sizel)两项指标上,贝叶斯CSRNet模型与CSRNet模型相同且优于YOLOv3模型和改进YOLOv3模型.贝叶斯CSRNet模型可实现无人机航拍图像内苗木数量的自动、准确、快速统计,为苗木库存智能盘点提供参考.

无人机、模型、苗木计数、贝叶斯CSRNet、CSRNet、粘连苗木、云杉

38

TP391.4(计算技术、计算机技术)

国家重点研发计划;中央高校基本科研业务费专项;北京市共建项目

2022-10-24(万方平台首次上网日期,不代表论文的发表时间)

共9页

43-50,323

相关文献
评论
暂无封面信息
查看本期封面目录

农业工程学报

1002-6819

11-2047/S

38

2022,38(14)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn