10.11975/j.issn.1002-6819.2022.10.036
基于气敏传感器阵列特征优化的储粮害虫赤拟谷盗检测
为实现储粮中害虫赤拟谷盗(Tribolium castaneum(Herbst))的检测,该研究使用自主开发的储粮害虫电子鼻检测装置,采集了小麦中不同虫口密度梯度的赤拟谷盗挥发性气味信息,根据10个气敏传感器采集到的响应曲线,提取了各个传感器的相对变化值(Relative Change,RC)、相对积分值(Relative Integral,RI)、平均微分值(Mean Difference,MD)作为原始特征矩阵(10×3),使用遗传算法(Genetic Algorithm,GA)作为特征选择方法,获得样本的特征信息,通过建立预测回归模型,实现了对小麦中赤拟谷盗虫口密度的预测.以识别准确率作为评价指标,对原始的特征矩阵进行了多特征优化,优化后的特征矩阵的识别准确率由原始的82.85% 提升至97.14%,优化后的特征数量由原始的30个减少为12个,特征数量减少60%,传感器数量减少至8个.最后通过采用偏最小二乘回归(Partial Least Squares Regression,PLSR)、主成分回归(Principal Components Regression,PCR)和支持向量机回归(Support Vector Machine Regression,SVR)3种回归方法进行回归预测,研究结果表明:基于偏最小二乘回归(PLSR)的预测模型达到了较好的预测效果,预测集回归模型的相关系数r和均方根误差RMSE分别为0.828和11.293.研究证明了气敏传感器阵列多特征优化方法的可行性和有效性,同时为实现粮食虫害快检测提供一种方法和参考.
传感器、优化、电子鼻、粮食虫害、挥发性气味、赤拟谷盗、传感器阵列、特征选择、预测
38
TP212.6(自动化技术及设备)
国家重点研发计划2019YFC1605303
2022-08-26(万方平台首次上网日期,不代表论文的发表时间)
共7页
303-309