基于双层数据分解混合模型预测鄱阳湖COD
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11975/j.issn.1002-6819.2022.05.035

基于双层数据分解混合模型预测鄱阳湖COD

引用
化学需氧量(Chemical Oxygen Demand,COD)是衡量水质状况的最重要参数之一,反映水体受还原性物质污染的程度.该研究采用改进的完全集合经验模式分解(Improved Complete Ensemble Empirical Mode Decomposition With Adaptive Noise,ICEEMDAN)、变分模式分解(Variational Mode Decomposition,VMD)相结合的双层数据分解算法,并利用双向长短期记忆(Bidirectional Long Short-term Memory,BLSTM)神经网络,提出了一种混合模型IVB(Improved Complete Ensemble Empirical Mode Decomposition With Adaptive Noise-Variational Mode Decomposition-Bidirectional Long Short-term Memory),并以鄱阳湖高锰酸盐指数(Permanganate index,CODMn)监测数据为研究对象,进行案例研究.结果表明,IVB模型具有良好的预测性能:1 d以后的CODMn预测中,IVB模型的平均绝对百分比误差为2.21%,与单一BLSTM神经网络模型相比降低了10.57个百分点,而与IB(Improved Complete Ensemble Empirical Mode Decomposition With Adaptive Noise-Bidirectional Long Short-term Memory)模型相比降低了4.62个百分点;7 d以后的CODMn预测中,IVB模型的平均绝对百分比误差为8.18%,与单一BLSTM神经网络模型相比降低了16.34个百分点,而与IB模型相比降低了4.68个百分点.这项研究表明,所开发的IVB模型可以用作水资源管理的有效分析与决策工具.

水质、机器学习、COD、数据分解、样本熵(SE)

38

X52(水体污染及其防治)

国家自然科学基金;天津市高校科研创新团队培训计划;天津市科技计划项目;天津市科技计划项目

2022-06-22(万方平台首次上网日期,不代表论文的发表时间)

共7页

296-302

相关文献
评论
暂无封面信息
查看本期封面目录

农业工程学报

1002-6819

11-2047/S

38

2022,38(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn