基于特征转移植被指数的水稻叶片氮素含量定量估算
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11975/j.issn.1002-6819.2022.02.020

基于特征转移植被指数的水稻叶片氮素含量定量估算

引用
水稻叶片氮素含量遥感检测是实现水稻精准施肥的前提条件.为了探究利用光谱技术快速、便捷的实现水稻叶片氮素的精准检测,该研究在水稻关键生育期,利用水稻叶片400~1000 nm高光谱反射率信息,利用连续投影法提取敏感波段,在此基础上,提出了一种波段特征转移的植被指数构建思路,构建了由3个波段构成的氮素特征转移指数(Nitrogen Characteristic Transfer Index,NCTI),并利用线性归回模型构建了水稻叶片氮素含量反演模型.结果表明:该研究采用连续投影法从水稻叶片光谱中提取了6个特征波段,具体为500、555、662、690、729、800 nm;运用氮素特征转移思路构建了由550、729和800 nm构成的氮素特征转移指数(NCTI);以NCTI为输入,运用线性回归的方式构建水稻氮素含量反演模型,其模型决定系数为0.774,均方根误差为0.379 mg/g,反演效果优于归一化植被指数(Normalized Difference Vegetation Index,NDVI)、增强植被指数(Enhanced Vegetation Index,EVI)等传统植被指数所建立的氮素含量反演模型,说明了NCTI在实际的应用中,能够作为快速反演水稻叶片氮素含量的高光谱植被指数.该研究能够为水稻叶片氮素含量光谱检测提供一定的客观数据支撑和模型参考.

高光谱、氮、植被指数、水稻、回归分析

38

S252(农业航空)

辽宁省教育厅重点攻关项目LSNZD202005

2022-04-18(万方平台首次上网日期,不代表论文的发表时间)

共8页

175-182

相关文献
评论
暂无封面信息
查看本期封面目录

农业工程学报

1002-6819

11-2047/S

38

2022,38(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn