光谱指数筛选方法与统计回归算法结合的水稻估产模型对比
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11975/j.issn.1002-6819.2021.21.024

光谱指数筛选方法与统计回归算法结合的水稻估产模型对比

引用
为了探寻高效的水稻产量估算方法,在获取2019年黑龙江省三江平原别拉洪河流域内水稻产量数据和MOD09A1遥感数据基础上,对比不同指数筛选方法和统计回归算法结合的建模估产效果,以得到其中最佳的产量估算模型.通过相关系数(correlation coefficient,r)分析法、变量投影重要性(Variable Importance in Projection,VIP)分析法和袋外数据重要性(Out-Of-Bag data importance,OOB)分析法分析水稻4个生育期(分蘖期、抽穗期、孕穗期和乳熟期)的不同波段和光谱指数对于水稻产量的敏感性,筛选出特征波段和指数,再结合随机森林(Random Forest,RF)、支持向量机(Support Vector Machine,SVM)和偏最小二乘(Partial Least Squares,PLS)3种统计回归方法,构建了9种水稻产量估算模型:r-RF、r-SVM、r-PLS、VIP-RF、VIP-SVM、VIP-PLS、OOB-RF、OOB-SVM、OOB-PLS.结果表明:同一指数筛选方法对不同模型的契合程度不同,OOB与RF更为契合,VIP和r与PLS更为契合,r与SVM更为契合;在3种建模方法中偏最小二乘模型和支持向量机模型有较好的效果,随机森林模型效果最好,其中OOB-RF模型最优,其模型验证决定系数为0.742,均方根误差为206 kg/hm2.研究结果可为水稻产量估算模型研究提供参考,具有一定的理论意义.

遥感;产量;模型;水稻;支持向量机;指数筛选方法

37

S25(农业航空)

国家重点研发计划;国家自然科学基金;中国水利水电科学研究院技术创新团队项目

2022-02-18(万方平台首次上网日期,不代表论文的发表时间)

共9页

208-216

相关文献
评论
暂无封面信息
查看本期封面目录

农业工程学报

1002-6819

11-2047/S

37

2021,37(21)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn