基于机器学习算法的冬小麦始花期预报方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11975/j.issn.1002-6819.2021.11.018

基于机器学习算法的冬小麦始花期预报方法

引用
该研究采用机器学习算法,明确冬小麦始花期的主要气象影响因子,并建立始花期预报模型.基于1980-2019年江苏省10个观测点冬小麦生育期观测资料和逐日气象数据,应用随机森林(Random Forest,RF)、反向神经网络(Back Propagation,BP)、多元线性回归(Multiple Linear Regression,MLR)3种算法分别建立始花期预报模型,以决定系数、均方根误差、预报准确率为评判指标,对模型模拟精度进行比较分析.结果表明,温度类因子对始花期影响的重要性明显大于降水类和日照类.基于筛选出的重要特征变量,3种算法建立的始花期预报模型均可在4月初对始花期进行预报,最迟可提前5 d预报,最早可提前32 d预报;RF算法模拟精度最高,BP算法次之,MLR算法相对低一些;RF算法能准确模拟出始花期波动趋势,大部分站点的始花日期预报准确率都在85.0%以上,表明RF算法在始花期预报中有较高的可靠性和业务应用潜力.

作物;气象;冬小麦;始花期;随机森林算法;神经网络算法

37

P49(应用气象学)

国家重点研发计划项目;国家自然科学基金项目

2021-09-01(万方平台首次上网日期,不代表论文的发表时间)

共10页

162-171

相关文献
评论
暂无封面信息
查看本期封面目录

农业工程学报

1002-6819

11-2047/S

37

2021,37(11)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn