10.11975/j.issn.1002-6819.2021.09.024
基于双注意力语义分割网络的田间苗期玉米识别与分割
为实现复杂田间场景中幼苗期玉米和杂草的准确识别与区域划分,该研究提出改进的双注意力语义分割方法,通过获取形态边界实现玉米幼苗的识别与精细分割,在此基础上采用形态学处理方法识别图像中除玉米外的全部杂草区域.首先对6种当前最高性能的语义分割网络进行对比,确定模型原始架构;建立幼苗期玉米语义分割模型,包括改进深层主干网络增强特征,引入双注意力机制构建特征的场景语义依赖关系,以编码器-解码器结构组建模型并增加辅助网络优化底层特征,改进损失函数协调模型整体表现,制定改进的迁移学习策略;提出图像形态学处理方法,基于玉米像素分割结果,生成杂草分割图.测试结果表明,模型的平均交并比、平均像素识别准确率分别为94.16%和95.68%,相比于原网络分别提高1.47%和1.08%,识别分割速度可达15.9帧/s.该研究方法能够对复杂田间场景中的玉米和杂草进行准确识别与精细分割,在仅识别玉米的前提下识别杂草,有效减少图像标注量,避免田间杂草种类的多样性对识别精度的影响,解决玉米与杂草目标交叠在形态边界上难以分割的问题,研究结果可为智能除草装备提供参考.
图像识别;图像分割;玉米;卷积神经网络;语义分割;双重注意力
37
TP274;TP391.41(自动化技术及设备)
山西省高等学校科技创新项目;山西省优秀博士来晋工作资助项目;山西农业大学科技创新基金项目
2021-08-09(万方平台首次上网日期,不代表论文的发表时间)
共11页
211-221