光谱特征变量和BP神经网络构建油用牡丹种子含水率估算模型
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11975/j.issn.1002-6819.2020.22.034

光谱特征变量和BP神经网络构建油用牡丹种子含水率估算模型

引用
为了进一步提高种子含水率的高光谱估算精度,该研究测定了156份油用牡丹种子的近红外吸收光谱及其对应的含水率值,分析了近红外吸收光谱、一阶微分光谱、水分吸收特征参数与含水率的相关关系,构建了基于特征波长吸收光谱、特征波长一阶微分光谱、水分特征吸收参数和BP神经网络的油用牡丹种子含水率估算模型,并对模型进行了验证;再结合一元线性回归(SLR,Single Linear Regression)、逐步多元线性回归(SMLR,Stepwise MultipleLinear Regression)、偏最小二乘回归(PLSR,Partial Least Squares Regression)模型与BP神经网络(BPNN,BP Neural Network)模型进行比较.结果表明:1)油用牡丹种子含水率的吸收光谱特征波长位于1410、1900、1990 nm,一阶微分光谱特征波长位于1150、1950、2080 nm;2)以DF2080和AD2140为自变量建立的一元线性回归模型预测效果较优,在能够满足水分估算精度的情况下,是最优的选择方法.3)将优选的特征参数作为输入,实测含水率值作为输出,构建BP神经网络模型,其建模与验模R2分别为0.978和0.973,RMSE分别为0.220%和0.242%,而RPD值分别为6.478和5.889,与其他模型相比,BP神经网络模型的建模及预测精度均最高,是估算油用牡丹种子含水率的最优模型,其次为逐步多元线性回归模型.研究结果表明BP神经网络模型对种子含水率具有更好的预测能力,是估算油用牡丹种子含水率的有效方法.

水分、模型、近红外光谱、特征变量、BP神经网络、油用牡丹种子

36

S379(农产品收获、加工及贮藏)

河南省科技公关项目;河南科技大学博士科研启动基金;河南科技大学大学生研究训练计划项目

2021-01-25(万方平台首次上网日期,不代表论文的发表时间)

共8页

308-315

相关文献
评论
暂无封面信息
查看本期封面目录

农业工程学报

1002-6819

11-2047/S

36

2020,36(22)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn