无人机影像反演玉米冠层LAI和叶绿素含量的参数确定
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11975/j.issn.1002-6819.2020.19.007

无人机影像反演玉米冠层LAI和叶绿素含量的参数确定

引用
小型低空无人机(Unmanned Aerial Vehicle,UAV)机动灵活、操作简便,可以按需获取高空间分辨率影像,是育种玉米长势监测的一种重要技术手段.针对UAV影像反演玉米冠层叶面积指数(LAI,Leaf Area Index)和叶绿素含量的参数确定问题,该研究以DJI S1000+无人机为平台,搭载法国Parrot Sequoia相机,获取海南三亚市崖城玉米育种基地的多光谱影像.基于预处理后的UAV影像,采用重采样的方式获得不同分辨率下(0.1~1 m)的不同植被指数,所构建的植被指数包括归一化植被指数(Normalized Difference Vegetation Index,NDVI)、叶绿素指数(Grassland Chlorophyll Index,GCI)、比值植被指数(Ratio Vegetation Index,RVI)、归一化红边红指数(Normalized Difference rededge-red Index,NDIrer)、归一化红边绿指数(Normalized Difference rededge-green Index,NDIreg)和重归一化植被指数(Renormalized Difference Vegetation Index,RDVI),通过将不同分辨率下的不同植被指数与地面实测数据进行回归分析,以获得各分辨率下植被指数与冠层LAI和叶绿素含量的关系模型及其决定系数,以决定系数的大小为依据来确定玉米冠层LAI和叶绿素含量反演的最优空间分辨率和最优植被指数.通过试验发现,在分辨率为0.6 m时,NDVI与地面实测LAI之间的决定系数R2为0.80,决定系数达到了最大,利用该分辨率下的NDVI反演得到的LAI验证精度R2达到0.73;在分辨率为0.1 m时,NDIreg与地面实测叶绿素含量之间的决定系数R2为0.70,决定系数达到最大,利用该分辨率下的NDIreg反演得到的叶绿素含量验证精度R2达到了0.63.因此得出结论:1)植被指数的选择:① 对于玉米冠层LAI的反演来说,不包含绿波段的植被指数的LAI反演精度较高,这说明绿波段对LAI的变化不敏感;② 对于玉米冠层叶绿素含量反演来说,包含红边波段的植被指数的反演精度较高,因此影像的红边波段对叶绿素含量的变化非常敏感.2)UAV影像空间分辨率的选择:反演LAI的最优分辨率是0.6 m,此时NDVI与实测LAI的决定系数达到最大;反演冠层叶绿素含量的最优分辨率是0.1~0.3 m范围内,此时NDIreg与实测叶绿素含量的决定系数达到最大.该研究可为UAV反演玉米表型参数时的分辨率和植被指数选择提供参考.

作物、无人机、模型、植被指数、LAI、叶绿素含量、分辨率、红边波段

36

TP79(遥感技术)

国家自然科学基金;国家重点研发计划

2020-12-29(万方平台首次上网日期,不代表论文的发表时间)

共8页

58-65

相关文献
评论
暂无封面信息
查看本期封面目录

农业工程学报

1002-6819

11-2047/S

36

2020,36(19)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn