基于作物生长监测诊断仪的双季稻叶面积指数监测模型
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11975/j.issn.1002-6819.2020.10.017

基于作物生长监测诊断仪的双季稻叶面积指数监测模型

引用
为探索作物生长监测诊断仪(Crop Growth Monitoring and Diagnosis Apparatus,CGMD)在不同株型双季稻长势指标监测应用的准确性和适用性,该研究开展了不同株型品种和施氮量的田间试验,采用CGMD获取冠层差值植被指数(Differential Vegetation Index,DVI)、归一化植被指数(Normalized Difference Vegetation Index,NDVI)和比值植被指数(Ratio Vegetation Index,RVI),并同步采用高光谱仪(Analytical Spectral Devices,ASD)获取冠层光谱反射率,构建DVI、NDVI和RVI;通过比较2种光谱仪获取的植被指数变化特征及相互定量关系,评价CGMD的监测精度,建立基于CGMD的不同株型双季稻叶面积指数(Leaf Area Index,LAI)监测模型,并用独立数据对模型进行检验.结果表明:不同株型品种的 LAI、DVI、NDVI 和 RVI 随施氮量增加而增大,随生育进程推进呈"低—高—低"的变化趋势;基于CGMD与ASD的DVI、NDVI和RVI间的决定系数(Determination Coefficient,R2)分别为0.959~0.968、0.961~0.966和0.957~0.959,表明CGMD具有较高监测精度,可替代价格昂贵的ASD获取DVI、NDVI和RVI.基于CGMD植被指数的单生育期LAI监测模型的预测效果优于全生育期,基于CGMD植被指数的松散型品种LAI监测模型的预测效果优于紧凑型品种;基于DVICGMD的线性方程可较好地预测LAI,模型R2为0.857~0.903,模型检验的相关系数(Correlation Coefficient,r)、均方根误差(Root Mean Square Error,RMSE)和相对均方根误差(Relative Root Mean Square Error,RRMSE)分别为0.950~0.984、0.18~0.43和3.95%~9.40%;基于NDVICGMD的指数方程可较好地预测LAI,模型R2为0.831~0.884,模型检验的r、RMSE和RRMSE分别为0.906~0.967、0.24~0.38和5.73%~9.16%;基于RVICGMD的幂函数方程可较好地预测LAI,模型R2为0.830~0.881,模型检验的r、RMSE和RRMSE分别为0.905~0.954、0.25~0.56和7.37%~9.99%.与传统人工取样测定LAI法相比,利用CGMD可实时无损监测双季稻LAI动态变化,可替代SunScan植物冠层分析仪获取双季稻LAI,在双季稻生产中具有推广应用价值.

作物、模型、氮、双季稻、作物生长监测诊断仪、植被指数、叶面积指数

36

S318(作物生物学原理、栽培技术与方法)

国家重点研发计划项目;江西省科技计划项目;国家青年拔尖人才支持计划项目;国家自然科学基金项目;江西省"双千计划"项目;江西省"远航工程"项目资助

2020-07-14(万方平台首次上网日期,不代表论文的发表时间)

共9页

141-149

相关文献
评论
暂无封面信息
查看本期封面目录

农业工程学报

1002-6819

11-2047/S

36

2020,36(10)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn