基于Sentinel-1A影像和一维CNN的中国南方生长季早期作物种类识别
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11975/j.issn.1002-6819.2020.03.021

基于Sentinel-1A影像和一维CNN的中国南方生长季早期作物种类识别

引用
作物的早期识别对粮食安全至关重要.在以往的研究中,中国南方作物早期识别面临的主要挑战包括:1)云层覆盖时间长、地块尺寸小且作物类型丰富;2)缺少高时空分辨率合成孔径雷达(synthetic aperture radar,SAR)数据.欧洲航天局Sentinel-1A(S1A)卫星提供的SAR图像具有12 d的重访周期,空间分辨率达10 m,为中国南方作物早期识别提供了新的机遇.为在作物早期识别中充分利用S1A影像的时间特征,本研究提出一维卷积神经网络(one-dimensional convolutional neural network,1D CNN)的增量训练方法:首先利用生长季内全时间序列数据来训练1D CNN的超参数,称为分类器;然后从生长季内第一次S1A影像获取开始,在每个数据获取时间点输入该点之前(包括该点)生长季内所有数据训练分类器在该点的其他参数.以中国湛江地区2017年生长季为研究实例,分别基于VV、VH和VH+VV,评估不同极化数据在该地区的作物分类效果.为验证该方法的有效性,本研究同时应用经典的随机森林(random forest,RF)模型对研究区进行试验.结果表明:1)基于VH+VV、VH和VV极化数据的分类精度依次降低,其中,基于VH+VV后向散射系数时间序列1D CNN和RF测试结果的Kappa系数最大值分别为0.924和0.916,说明S1A时间序列数据在该地区作物分类任务中有效;2)在研究区域内2017年生长季早期,基于1D CNN和RF的5种作物的F-measure均达到0.85及以上,说明本文所构建的1D CNN在该地区主要作物早期分类任务中有效.研究结果证明,针对中国南方作物早期分类,本研究提出的1D CNN训练方案可行.研究结果可为深度学习在作物早期分类任务中的应用提供参考.

作物、遥感、识别、早期、一维卷积神经网络(1DCNN)、深度学习、合成孔径雷达、Sentinel-1

36

S-1(农业科学技术现状与发展)

高分辨率对地观测系统重大专项:GF-6 卫星数据大气校正技术30-Y20A02-9003-17/18;农业农村部现代农业人才支撑计划农业空间信息技术创新团队项目914-2;广东省农业科技创新及推广项目2019KJ102

2020-04-15(万方平台首次上网日期,不代表论文的发表时间)

共9页

169-177

相关文献
评论
暂无封面信息
查看本期封面目录

农业工程学报

1002-6819

11-2047/S

36

2020,36(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn