基于径向基神经网络与粒子群算法的双叶片泵多目标优化
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11975/j.issn.1002-6819.2019.02.004

基于径向基神经网络与粒子群算法的双叶片泵多目标优化

引用
针对双叶片泵存在水力性能比相同比转速的多叶片离心泵低的缺陷,该文以一台型号为80QW50-15-4的双叶片污水泵作为研究对象,将其设计流量点的扬程和效率定为优化目标,运用ANSYS CFX(computational fluid dynamics x)进行数值模拟获得性能数据,采用径向基(radial basis function,RBF)神经网络建立结构参数与扬程、效率性能间的预测模型,并将其用作粒子群算法的适应值评价模型,在样本空间内进行最优值求解,获得扬程和效率的Pareto解.选取扬程最优个体和效率最优个体进行数值模拟,研究其在输运不同介质时的性能与内流场差异,并与初始模型的数值模拟数据相比较.经试验验证,清水介质中设计流量点扬程最优个体的扬程较初始个体增加0.96 m,增幅达到5.5%;效率最优个体的效率较初始个体提升了10.11个百分点.该优化方法改善了叶轮水力特性,使双叶片泵性能得到提高.

泵、算法、优化、数值模拟、径向基神经网络

35

TH311(泵)

国家自然科学基金资助项目51476070、51109094

2019-04-09(万方平台首次上网日期,不代表论文的发表时间)

共8页

25-32

相关文献
评论
暂无封面信息
查看本期封面目录

农业工程学报

1002-6819

11-2047/S

35

2019,35(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn