基于SVM和区域生长结合算法的南方主要蔬菜害虫分类识别
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11975/j.issn.1002-6819.2018.08.025

基于SVM和区域生长结合算法的南方主要蔬菜害虫分类识别

引用
该文基于支持向量机(support vector machine,SVM)与区域生长结合算法,设计了对黄曲条跳甲、烟粉虱、小菜蛾、蓟马这四类蔬菜害虫进行分类识别的检测算法.该方案将识别过程融入到分割中,采用网格法进行区域生长种子点的选取,简化图像处理的步骤.该文每种蔬菜害虫训练样本图像为60幅,测试样本为40幅.试验展示,基于其形态、颜色特征,该算法可以将南方重大蔬菜害虫正确分割识别出来,对黄曲条跳甲、烟粉虱、小菜蛾、蓟马成功率为分别为96.4%、93.2%、95.4%、98.2%,算法达到了对多种害虫进行分类的效果,有较好的应用前景.

图像分割、分类、SVM、蔬菜害虫、识别、区域生长

34

TP391.4;S24(计算技术、计算机技术)

China Spark Program2015GA780002,2014GA78006,2014GA780054;Guangdong Science and Technology Program2015A020224032.Foundation item:China Spark Program2015GA780002,2014GA78006,2014GA780054;Guangdong Science and Technology Program2015A020224032

2018-06-15(万方平台首次上网日期,不代表论文的发表时间)

共8页

192-199

相关文献
评论
暂无封面信息
查看本期封面目录

农业工程学报

1002-6819

11-2047/S

34

2018,34(8)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn