基于卷积神经网络的田间多簇猕猴桃图像识别方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11975/j.issn.1002-6819.2018.02.028

基于卷积神经网络的田间多簇猕猴桃图像识别方法

引用
为实现田间条件下快速、准确地识别多簇猕猴桃果实,该文根据猕猴桃的棚架式栽培模式,采用竖直向上获取果实图像的拍摄方式,提出一种基于 LeNet 卷积神经网络的深度学习模型进行多簇猕猴桃果实图像的识别方法.该文构建的卷积神经网络通过批量归一化方法,以ReLU为激活函数,Max-pooling为下采样方法,并采用Softmax回归分类器,对卷积神经网络结构进行优化.通过对100幅田间多簇猕猴桃图像的识别,试验结果表明:该识别方法对遮挡果实、重叠果实、相邻果实和独立果实的识别率分别为78.97%、83.11%、91.01%和94.78%.通过与5种现有算法进行对比试验,该文算法相对相同环境下的识别方法提高了5.73个百分点,且识别速度达到了0.27 s/个,识别速度较其他算法速度最快.证明了该文算法对田间猕猴桃图像具有较高的识别率和实时性,表明卷积神经网络在田间果实识别方面具有良好的应用前景.

图像处理、图像识别、算法、深度学习、卷积神经网络、猕猴桃

34

TP391.41(计算技术、计算机技术)

陕西省重点研发计划一般项目2017NY-164;陕西省科技统筹创新工程计划项目2015KTCQ02-12;国家自然科学基金资助项目61175099;西北农林科技大学国际合作种子基金A213021505

2018-03-21(万方平台首次上网日期,不代表论文的发表时间)

共7页

205-211

相关文献
评论
暂无封面信息
查看本期封面目录

农业工程学报

1002-6819

11-2047/S

34

2018,34(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn