基于深度集成学习的青梅品级智能反馈认知方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11975/j.issn.1002-6819.2017.23.036

基于深度集成学习的青梅品级智能反馈认知方法

引用
针对传统机器判定水果品级的开环认知模式存在特征空间和分类准则一旦建立不再更新的缺陷,模仿人由整体到局部反复推敲比对的思维信息交互认知模式,探索了一种具有认知结果熵测度指标约束的青梅品质智能反馈认知方法.首先,在有限论域不确定条件下从信息论角度建立具有信息完备性评价指标的非结构化多层面动态特征表征的青梅品级认知智能决策信息系统模型.其次,基于架构自适应的卷积神经网络(adaptive structure convolutional neural networks,ASCNNs)和集成随机权向量函数连接网络分类器(random vector functional-link net,RVFL),建立青梅图像由整体到局部有明确品级特征表征映射关系的特征空间数据结构与分类准则.再次,基于广义误差和广义熵理论,建立青梅图像认知结果的熵函数形式测度评价指标.最后,建立基于不确定过程认知结果性能测度指标约束的动态反馈认知智能运行机制.针对1008幅青梅图像的平均识别率为98.15%,表明该文方法有效地增强了特征空间的泛化能力以及分类器的鲁棒性.该研究可为基于可见光的青梅品级快速准确机器认知提供参考.

评级、认知系统、图像识别、青梅品级、卷积神经网络、集成学习、熵测度、动态反馈认知

33

TP391(计算技术、计算机技术)

流程工业综合自动化国家重点实验室开放课题PAL-N201605, PAL-N201504

2018-01-18(万方平台首次上网日期,不代表论文的发表时间)

共8页

276-283

相关文献
评论
暂无封面信息
查看本期封面目录

农业工程学报

1002-6819

11-2047/S

33

2017,33(23)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn