基于全卷积网络的哺乳母猪图像分割
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11975/j.issn.1002-6819.2017.23.028

基于全卷积网络的哺乳母猪图像分割

引用
猪舍场景下,光照变化、母猪体表颜色不均及与环境颜色对比度不大、母猪与仔猪的粘连等,均给目标分割带来很大的困难.该文提出了基于全卷积网络(FCN,fully convolutional networks)的哺乳母猪图像分割算法.以VGG16为基础网络,采用融合深层抽象特征与浅层细节特征并将融合的特征图上采样8倍的跳跃式结构,设计哺乳母猪分割的FCN.利用Caffe深度学习框架,以7栏伴有不同日龄仔猪的3811幅哺乳母猪训练样本进行母猪分割FCN训练,在另外21栏的523幅哺乳母猪测试集上的分割结果表明:该算法可有效避免光线变化、母猪颜色不均、小猪遮挡与粘连等影响,实现完整的哺乳母猪区域分割;分割的平均准确率达到99.28%,平均区域重合度达到95.16%,平均速度达到0.22 s/幅.与深度卷积网络的SDS(simultaneous detection and segmentation)及传统的基于图论的图像分割、基于水平集的图像分割方法做了对比试验,该文分割方法平均区域重合度分别比这3种方法高出9.99、31.96和26.44个百分点,有较好的泛化性和鲁棒性,实现了猪舍场景下哺乳母猪准确、快速分割,可为猪只图像分割提供了技术参考.

图像分割、算法、试验、全卷积网络、哺乳母猪

33

TP391(计算技术、计算机技术)

国家科技支撑计划2015BAD06B03-3;广东省科技计划项目2015A020209148;广东省科技计划2015A020224038;广州市科技计划项目201605030013;广州市科技计划项目201604016122

2018-01-18(万方平台首次上网日期,不代表论文的发表时间)

共7页

219-225

相关文献
评论
暂无封面信息
查看本期封面目录

农业工程学报

1002-6819

11-2047/S

33

2017,33(23)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn