10.11975/j.issn.1002-6819.2017.23.026
基于温湿度与遥感植被指数的冬小麦赤霉病估测
为明晰江淮区域大田冬小麦赤霉病的发生特征,建立冬小麦赤霉病遥感估测模型,该文分析了冬小麦赤霉病病情指数与气候因素(不同时间尺度日均气温和日均空气相对湿度)、生长参数(生物量、叶面积指数和叶片叶绿素含量)和光谱信息(NDVI、RVI和DVI)之间的互作关系.结果表明:1)不同时间尺度日均气温之间存在较好相关性,5日均气温与冬小麦赤霉病病情指数间的相关系数最大为0.77.与日均气温相类似,不同时间尺度日均空气相对湿度之间也存在不同程度的相关性,5日均空气相对湿度与赤霉病病情指数间的相关性最大,其相关性高于5日均气温.2)冬小麦生物量、叶面积指数和叶片叶绿素含量与赤霉病病情指数之间均呈线性正相关关系,且均达到显著水平,说明冬小麦群体密度大、郁闭程度高以及长势过旺是赤霉病易发的主要农学诱因.3)遥感植被指数NDVI(normalized difference vegetation index)、RVI(ratio vegetation index)和DVI(difference vegetation index)分别与冬小麦叶面积指数、生物量和叶片叶绿素含量之间有较好相关性,可以利用NDVI、RVI和DVI分别替换叶面积指数、生物量和叶片叶绿素含量参与建模.4)综合5日均气温、5日均空气相对湿度、NDVI、RVI和DVI 5个敏感因子,构建基于温湿度与遥感植被指数的冬小麦赤霉病病情指数估测模型,模型的估测值与实测值较为一致,RMSE为5.3%,相对误差为9.54%.说明本研究所建立的估测模型可以实现对冬小麦始花期赤霉病的有效估测,该研究可为江淮区域冬小麦生产中防病减灾的信息获取提供方法参考.
病害、评估、温度、冬小麦赤霉病、光谱信息、相对湿度、生长参数、江淮区域
33
S127(农业物理学)
国家自然科学基金项目41171336;江苏省重点研究计划BE2016730;中科院数字地球重点实验室开放基金项目2016LDE007
2018-01-18(万方平台首次上网日期,不代表论文的发表时间)
共8页
203-210