基于深度卷积神经网络的水稻穗瘟病检测方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11975/j.issn.1002-6819.2017.20.021

基于深度卷积神经网络的水稻穗瘟病检测方法

引用
穗瘟是一种严重影响水稻产量及品质的多发病害,有效地检测穗瘟是水稻病害防治的重要任务.该文提出基于深度卷积神经网络GoogLeNet模型的水稻穗瘟病检测方法,该方法利用Inception基本模块重复堆叠构建主体网络.Inception模块利用多尺度卷积核提取不同尺度穗瘟病斑分布式特征并进行级联融合.GoogLeNet利用其结构深度和宽度,学习复杂噪声高光谱图像的隐高维特征表达,并在统一框架中训练Softmax分类器,实现穗瘟病害预测建模.为验证该研究所提方法的有效性,以1467株田间采集的穗株为试验对象,采用便携式户外高光谱成像仪GaiaField-F-V10在自然光照条件下拍摄穗株高光谱图像,并由植保专家根据穗瘟病害描述确定其穗瘟标签.所有高光谱图像-标签数据对构成GoogLeNet模型训练和验证的原始数据集.该文采用随机梯度下降算法(SGD,stochastic gradient descent)优化GoogLeNet模型,提出随机扔弃1个波段图像和随机平移平均谱图像亮度的2种数据增强策略,增加训练数据规模,防止模型过拟合并改善其泛化性能.经测试,验证集上穗瘟病害预测最高准确率为92.0%.试验结果表明,利用GoogLeNet建立的深度卷积模型,可以很好地实现水稻穗瘟病害的精准检测,克服室外自然光条件下利用光谱图像进行病害预测面临的困难,将该类研究往实际生产应用推进一大步.

病害、模型、图像处理、高光谱成像、穗瘟病检测、深度卷积神经网络、GoogLeNet

33

S24(农业电气化与自动化)

广东省科技计划公益研究与能力建设专项2014A020208112;现代农业产业技术体系建设专项资金资助CASRS-01-33

2017-12-06(万方平台首次上网日期,不代表论文的发表时间)

共8页

169-176

相关文献
评论
暂无封面信息
查看本期封面目录

农业工程学报

1002-6819

11-2047/S

33

2017,33(20)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn