基于聚类法筛选历史相似气象数据的玉米产量DSSAT-CERES-Maize预测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11975/j.issn.1002-6819.2017.19.019

基于聚类法筛选历史相似气象数据的玉米产量DSSAT-CERES-Maize预测

引用
根据陕西杨凌、合阳、长武3个站点各2 a玉米试验,在对玉米生长模拟模型CERES-Maize进行调试、验证的基础上,探索在生育期内进行动态产量预测的方法并验证.研究将目标生育期内未知气象数据分别用试验地的多年历史同期数据代替,结合生育期实时数据对应生成多个完整的气象数据序列运行模型预测产量.随着生育期的推进,逐日在气象数据序列中融入目标年实测的气象数据,从播种至收获动态模拟玉米产量.此外该研究使用改进前后的K-NN算法从历史气象年份中筛选目标年的气象相似年份进而预测产量.通过对3种方法预测精度及预测效率对比,确定改进的K-NN算法最优.研究表明,玉米生育前期产量预测可靠性和准确率均较差,抽雄后预测精度迅速提高;利用改进的K-NN算法在3个站点全生育期预测产量的平均绝对相对误差的均值分别为9.9%、19.8%、17.9%,抽雄后预测产量的平均绝对相对误差在0.2%~12.6%之间,相比于使用全部历史年份数据进行全生育期产量预测,模拟所需时间从61 min缩短至25 min.对该方法中降雨因子的筛选进一步改进可提高预报精度,未来有望达到业务应用水平.

聚类、气象预报、模型、玉米、产量预测、CERES-Maize、K-NN

33

S165+.27(农业气象学)

国家高技术研究发展计划863计划2013AA102904;陕西省科技统筹创新工程计划项目2016KTZDNY03-06;黄土高原土壤侵蚀与旱地农业国家重点实验室开放基金A314021402-1611;西北农林科技大学人才专项资金;高等学校学科创新引智计划111计划B12007

2017-11-03(万方平台首次上网日期,不代表论文的发表时间)

共9页

147-155

相关文献
评论
暂无封面信息
查看本期封面目录

农业工程学报

1002-6819

11-2047/S

33

2017,33(19)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn