10.11975/j.issn.1002-6819.2017.18.018
像素自相关矩阵的阈值自适应角点检测算法
针对Harris角点检测算法中角点响应函数(corner response function,CRF)系数阈值与非极大值抑制系数阈值需要人为设定所造成的可变性和随机性等问题,该文提出一种通过计算图像每个像素的自相关矩阵行列式值,构造特征角点图像进行自适应阈值分割的改进Harris角点检测算法.该算法首先通过计算原图像经过方向滤波和低通滤波后各像素的自相关矩阵行列式值,以此构造特征角点图像;然后采用OTSU算法计算特征角点图像分割阈值,从而筛选出预选区域;最后结合改进的非极大值抑制方法提取有效角点.通过5组角点检测对比试验结果数据分析,不同类型图像的角点检测准确率均有提高,高分二号遥感影像的角点检测准确率提高27.06个百分点,可以初步得出,该算法相比传统Harris角点检测算法不但能够自动计算角点检测的最佳阈值,而且能够更准确地定位角点和去除边缘伪角点,从而提高了角点检测的精确度,该研究可为农业遥感影像数据检测提供参考.
图像处理、算法、角点检测、自相关矩阵、特征角点图像、非极大值抑制
33
TP391.41(计算技术、计算机技术)
遥感科学国家重点实验室课题Y6Y00200KZ
2017-12-06(万方平台首次上网日期,不代表论文的发表时间)
共7页
134-140