基于GF-1与Landsat8 OLI影像的作物种植结构与产量分析
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11975/j.issn.1002-6819.2017.11.019

基于GF-1与Landsat8 OLI影像的作物种植结构与产量分析

引用
作物种植结构监测和估产是精准农业遥感的重点领域,其研究对于指导作物种植结构和制定农业政策具有重要意义.该文以黑龙江省北安市为研究区,以2015年的Landsat8 OLI和多时相GF-1为遥感数据源,基于物候信息和光谱特征确定的农作物识别关键时期和特征参数,构建面向对象的决策树分类模型,开展作物种植结构监测研究;综合植被光谱指数和地面采样数据,采用逐步回归方法建立产量遥感估算模型.结果表明:多源与多时相的遥感数据可以反映不同农作物的季相特征,应用本文所构建的决策树分类模型,作物分类效果较好,总体精度达87.54%,Kappa系数为0.8115;2015年,北安市的主要作物类型为大豆、玉米、水稻和小麦,面积分别为2204、1955、122和19 km2,其中大豆的种植面积最大,占作物种植面积的51.24%.基于NDVI、EVI和GNDVI构建的多元回归模型为北安市大豆和玉米产量估算最优模型(R2=0.8237,均方根误差135.45 g/m2,精度80.55%);北安市玉米高产区集中分布在西部,大豆的高产区主要分布在东部;2015年北安市玉米和大豆的单产分别为8659、2846 kg/hm2,总产量分别为16.93×108、6.27×108 kg.利用作物关键物候期的多源多时相遥感数据能够精确高效地提取作物种植结构,构建的产量估算多元回归模型,为精准农业科学发展提供参考.

遥感、作物、提取、多源/多时相影像、面向对象、种植结构、作物产量

33

TP79(遥感技术)

中国科学院野外站联盟项目KFJ-SW-YW026;国家重点研发计划子课题2016YFC0500201-03

2017-07-25(万方平台首次上网日期,不代表论文的发表时间)

共11页

147-156,封4

相关文献
评论
暂无封面信息
查看本期封面目录

农业工程学报

1002-6819

11-2047/S

33

2017,33(11)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn