基于改进惯性矩算法的冷鲜猪肉新鲜度激光散斑图像检测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11975/j.issn.1002-6819.2017.07.035

基于改进惯性矩算法的冷鲜猪肉新鲜度激光散斑图像检测

引用
为了探究激光散斑技术检测冷鲜猪肉新鲜度的可行性,用660和465 nm 2种波长的激光对宰后24 h的猪肉样本在7 d内的激光散斑图像进行采集.以时间序列散斑(time history of speckle pattern,THSP)图像的惯性矩(inertia moment,IM)作为散斑活性,研究冷鲜猪肉散斑活性随货架期的变化规律.通过分析2种波长不同行的选取对IM值的影响,发现不同波长其奇偶行IM的规律不同,并针对传统IM算法容易出现异常值、稳定性差等缺点提出3点改进:设计排序算法动态选择散斑活性最高峰及周围2个相邻行,依此计算样本IM值;改进共生矩阵的修正矩阵计算方法;改进非零元素偏离对角线距离的计算方法.结果显示,改进方法可以有效地抑制异常值干扰,冷鲜猪肉散斑活性随货架期呈现先上升后下降的变化趋势.根据测得的挥发性盐基氮值(total volatile basic nitrogen,TVB-N)和散斑活性IM值建立猪肉新鲜度等级预测模型,结果显示465 nm波长的激光判别效果要好于660 nm激光,其训练集和预测集的识别率能达到87.5%和89.29%.试验结果表明利用激光散斑技术检测冷鲜猪肉新鲜度的具有可行性.

图像处理、无损检测、算法、冷鲜猪肉、新鲜度、激光散斑、惯性矩、共生矩阵

33

S123;TN247(农业物理学)

国家科技支撑计划资助2015BAD19B05;中国博士后科学基金2015M580401;江苏省高校自然科学研究重大项目15KJA550001;江苏省博士后科学基金1501108C

2017-05-24(万方平台首次上网日期,不代表论文的发表时间)

共7页

268-274

相关文献
评论
暂无封面信息
查看本期封面目录

农业工程学报

1002-6819

11-2047/S

33

2017,33(7)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn