基于冠层反射率模型的作物参数多阶段反演方法研究进展
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11975/j.issn.1002-6819.2017.01.026

基于冠层反射率模型的作物参数多阶段反演方法研究进展

引用
利用遥感手段,基于冠层反射率(canopy reflectance,CR)模型反演农作物参数具有经济、高效、普适性好的特点,是智慧农业快速、精确监测区域尺度农情信息的理想方法.然而,CR模型反演过程受“病态反演”问题影响.针对此,前人提出了多阶段目标决策(multi-stage,sample-direction dependent,target-decisions,MSDT)法和面向对象(object-based)反演法.分别依据CR模型参数的敏感性和不确定性,以及作物参数的空间分布特征,将反演过程划分为若干阶段,每阶段只反演部分参数,前阶段反演结果作为后阶段反演的先验知识,以此减少CR模型参数优化的不确定性,改善“病态反演”问题.该文系统总结了MSDT法与面向对象反演法,将其归纳为统一的“多阶段反演”方法,并提出概念模型.基于此,总结、讨论了多阶段反演中如下三方面共性问题,试分析可能的解决途径:1)多阶段反演决策还需要广泛比较、科学论证与改进,以确保其合理性和有效性;未来研究中,应将MSDT法与面向对象反演方法有机结合,在统一的多阶段反演技术框架下,制定更加合理的反演决策方法.2)CR模型的参数化精度可能影响多阶段反演;未来应尝试利用“天空地一体化”遥感技术和尺度转换方法获取先验知识,提高CR模型参数化精度.3)多阶段反演过程中,反演误差逐级传递;未来研究中,一方面应尝试识别并纠正前阶段反演中的误差,另一方面应合理利用前阶段反演结果,避免前阶段反演误差影响后阶段的反演.

遥感、模型、作物、多阶段目标决策、面向对象、多阶段反演、作物参数

33

S126;TP79(农业物理学)

四川省财政创新能力提升工程青年基金2015QNJJ-023;四川省财政创新能力提升工程新兴学科专项2013XXXK-024;四川省财政创新能力工程高新领域扩展专项基金2016GXTZ-011

2017-04-10(万方平台首次上网日期,不代表论文的发表时间)

共9页

190-198

相关文献
评论
暂无封面信息
查看本期封面目录

农业工程学报

1002-6819

11-2047/S

33

2017,33(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn