小波包-局部最相关算法提高土壤有机碳含量高光谱预测精度
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11975/j.issn.1002-6819.2017.01.024

小波包-局部最相关算法提高土壤有机碳含量高光谱预测精度

引用
高光谱遥感可以实现水稻土排水期有机碳含量的快速预测,但土壤反射率受多种噪声的影响,有机碳光谱信号探测受阻,预测模型性能低下,如何在去除噪声的同时最大限度地保持有机碳光谱信号十分重要.以原状新鲜水稻土为研究对象,采用Biorl.3小波系对反射光谱进行1~7层小波包变换,通过相关分析确定最大分解层;将原始反射率至最大分解层以内的各层光谱相关系数组成相关系数集,采用局部最相关算法(local correlation maximization,LCM)构造土壤有机碳最优光谱;最后基于最优光谱建立有机碳含量偏最小二乘预测模型并进行分析.结果显示:1)随着小波包分解层数的增加,土壤反射率与有机碳含量的相关性不断增强,到第6层达到最高,确定为小波包最大分解层;2)基于LCM构造的最优光谱比未去噪光谱平滑,比小波包去噪光谱保留了更多光谱细节;3)未去噪光谱、小波包去噪光谱和LCM最优光谱有机碳预测模型的验证决定系数分别为0.693、0.727和0.781,均方根误差为1.952、1.840和1.679 g/kg,残留预测偏差为1.85、1.97和2.17.小波包-局部最相关算法在去噪同时有效保持了土壤有机碳光谱信号,可提高水稻土有机碳含量高光谱预测精度.

光谱分析、土壤、有机质、小波包、局部最相关

33

S127(农业物理学)

中央高校基本科研业务费专项资金KYZ201522;江苏高校优势学科建设工程项目;国家自然科学基金项目41571171

2017-04-10(万方平台首次上网日期,不代表论文的发表时间)

共7页

175-181

相关文献
评论
暂无封面信息
查看本期封面目录

农业工程学报

1002-6819

11-2047/S

33

2017,33(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn