基于声信号特征加权的设施养殖羊行为分类识别
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11975/j.issn.1002-6819.2016.19.027

基于声信号特征加权的设施养殖羊行为分类识别

引用
中国西部地区正在发展集约化和规模化的设施养羊业,通过监测羊舍内的声信号可以判别羊只的行为状态,从而为设施养羊的福利化水平评估提取基础依据。梅尔频率倒谱系数(mel frequency cepstrum coefficient,MFCC)模拟了人耳对语音的处理特点且抗噪音性强,被广泛用于畜禽发声信号的特征提取,但其没有考虑各个特征分量表征声信号的能力。该研究构建羊舍无线声音数据采集系统,采集20只羊在设施羊舍内的打斗、饥饿、咳嗽、啃咬和寻伴共5种行为下的声信号,并通过Audacity音频处理软件选出720个清晰且不重叠的声音样本数据。根据MFCC各分量对羊舍声信号表征能力,特征参数提取采用一种熵值加权的MFCC参数,再求其一、二阶差分并进行主成分分析降维,得到优化的19维特征参数。通过对羊舍声信号的声谱图分析,设计了支持向量机二叉树识别模型,并对模型内的4个分类器参数进行网格化寻优测试,该识别模型对羊只5种行为下的声信号进行分类识别,用改进的特征参数与传统MFCC和线性预测倒谱系数(linear predictive cepstrum coefficient,LPCC)进行对比分析。结果表明,该特征参数对5种行为的识别率平均可达83.6%,分别高于MFCC和LPCC参数14.1%和26.8%,羊只打斗和咳嗽行为的声信号属于相似的短时爆发类声音,其识别率分别仅为80.6%和79.5%,啃咬声特征显著不易混淆,其查全率可达到为92.5%,改进特征参数更好的表征了羊舍声信号的特征,提高了羊只不同行为的识别率,为羊只健康和福利状况的监测提供理论依据。

动物、设施、声信号处理、梅尔频率倒谱系数、特征提取、支持向量机、行为识别

32

TN713(基本电子电路)

“十二五”国家科技支撑项目2014BAD08B05;国家自然科学基金项目11364029,61461042;内蒙古“草原英才”产业创新人才团队项目内组通字[2014]27号;内蒙古农业大学科技创新团队项目NDTD2013-6

2016-10-18(万方平台首次上网日期,不代表论文的发表时间)

共8页

195-202

相关文献
评论
暂无封面信息
查看本期封面目录

农业工程学报

1002-6819

11-2047/S

32

2016,32(19)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn