基于GF-1卫星数据的冬小麦叶片氮含量遥感估算
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11975/j.issn.1002-6819.2016.09.022

基于GF-1卫星数据的冬小麦叶片氮含量遥感估算

引用
以陕西关中地区大田和小区试验下的冬小麦为研究对象,探讨基于国产高分辨率卫星GF-1号多光谱数据的冬小麦叶片氮含量估算方法和空间分布格局。基于GF-1号光谱响应函数对地面实测冬小麦冠层高光谱进行重采样,获取GF-1号卫星可见光-近红外波段的模拟反射率,并构建光谱指数,利用与叶片氮含量在0.01水平下显著相关的8类光谱指数,分别建立叶片氮含量的一元线性、一元二次多项式和指数回归模型。通过光谱指数与叶片氮含量的敏感性分析,以及所建模型的综合对比分析,获取适合冬小麦叶片氮含量估算的最佳模型。结果表明:模拟卫星宽波段光谱反射率和卫星实测光谱反射率间的相关系数高于0.95,具有一致性;改进型的敏感性指数综合考虑了模型的稳定性、敏感性和变量的动态范围,敏感性分析表明比值植被指数对叶片氮含量的变化响应能力最强;综合模拟方程决定系数、模型敏感性分析、精度检验和遥感制图的结果,认为基于比值植被指数建立的叶片氮含量估算模型适用性最强,模拟结果与实际空间分布格局最为接近,为基于GF-1卫星数据的区域性小麦氮素营养监测提供了理论依据和技术支持。

卫星、氮、敏感性分析、GF-1、冬小麦

32

TP79;S127(遥感技术)

国家863计划项目2013AA102401。

2016-05-20(万方平台首次上网日期,不代表论文的发表时间)

共8页

157-164

相关文献
评论
暂无封面信息
查看本期封面目录

农业工程学报

1002-6819

11-2047/S

32

2016,32(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn