基于Relief F和PSO混合特征选择的面向对象土地利用分类
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11975/j.issn.1002-6819.2016.04.030

基于Relief F和PSO混合特征选择的面向对象土地利用分类

引用
针对面向对象土地利用分类存在特征维数过高的问题,提出了一种结合Relief F和粒子群优化算法(particle swarm optimization,PSO)的混合特征选择方法,即首先利用Relief F作为特征预选器滤除相关性小的特征,然后以PSO作为搜索算法,以支持向量机(support vector machine,SVM)的分类精度作为评估函数在剩余特征中选择出最优特征子集。该文以吉林省长春市部分区域为研究区,采用Landsat8遥感影像为数据源,首先对其进行多尺度分割,然后提取影像对象的光谱、纹理、形状和空间关系特征,利用提出的混合特征选择方法选取最优特征子集,最后使用SVM分类器对研究区进行土地利用分类,总体分类精度和Kappa系数分别为85.88%和0.8036,与基于4种其他特征选择方法的土地利用分类结果进行比较,基于Relief F和PSO的混合特征选择方法利用最少的特征获得最高的分类精度,能够有效地用于面向对象土地利用分类。

土地利用、分类、支持向量机、特征选择、面向对象、Relief F、粒子群优化算法

TP79;S127;F301.24(遥感技术)

中国地质调查局资助项目12120115063701;国土资源部公益性行业科研专项基金201511078-1

2016-03-25(万方平台首次上网日期,不代表论文的发表时间)

共6页

211-216

相关文献
评论
暂无封面信息
查看本期封面目录

农业工程学报

1002-6819

11-2047/S

2016,(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn