基于高光谱成像的苹果虫伤缺陷与果梗/花萼识别方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1002-6819.2015.04.046

基于高光谱成像的苹果虫伤缺陷与果梗/花萼识别方法

引用
为了快速、准确、无损检测在果梗/花萼的干扰下苹果虫伤缺陷,该文利用高光谱成像技术,首先选取正常果和虫伤果各80个,提取并分析了苹果表面感兴趣区域(虫伤区域、果梗区域、花萼区域、正常区域)的光谱曲线,结合824 nm波长特征图像的阈值分割和主成分分析,对获得的第一主成分图像提取160×120像素大小的感兴趣区域。然后提取感兴趣区域的能量、熵、惯性矩和相关性4个纹理特征,融合646、824 nm波段的相对光谱反射率的光谱特征,采用支持向量机对苹果虫伤区域和正常区域、果梗/花萼区域进行识别。试验结果表明:选取160×120像素大小的感兴趣区域图像、采用径向基核函数对正常果、果梗/花萼果与虫伤果的识别效果最好,总体识别率为97.8%。该研究为苹果质量等级在线评判提供理论依据。

无损检测、图像处理、主成分分析、苹果虫伤、果梗/花萼、高光谱成像、支持向量机

TP391.41(计算技术、计算机技术)

农业部公益性行业农业科研专项资助项目201103024;辽宁省教育厅科学技术研究资助项目L2011114

2015-03-25(万方平台首次上网日期,不代表论文的发表时间)

共7页

325-331

相关文献
评论
暂无封面信息
查看本期封面目录

农业工程学报

1002-6819

11-2047/S

2015,(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn