基于激光散斑的梨缺陷与果梗/花萼的识别
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1002-6819.2015.04.045

基于激光散斑的梨缺陷与果梗/花萼的识别

引用
为了测试利用激光散斑技术区分梨的缺陷与果梗/花萼的可行性,建立了激光散斑图像采集系统,对皇冠梨缺陷(腐烂)部位以及完好部位(花萼/果梗,无缺陷部位)分别进行了激光散斑图像的采集。利用Fujii方法(Fujii’s method)和加权广义差分方法(weighted generalized differences,WGD)对512幅散斑图像进行分析,对得到的Fujii和WGD结果图进行灰度共生矩阵特征提取,分别提取了角二阶矩、熵、惯性矩和相关性相应的均值及标准差,共计16组特征量。利用ROC曲线(receiver operator characteristic curve,ROC)进行特征量选取,结合约登指数测试单一特征量的分类效果,并利用二元logistic回归方法对所选特征量两两组合进行分析,结果显示基于WGD方法得到的角二阶矩均值与相关性标准差相结合在区分缺陷时效果最好,建模和预测准确率均达到了97.5%。试验的结果表明利用激光散斑图像方法对梨缺陷与果梗/花萼进行识别是可行的。

识别、图像处理、水果、激光散斑、缺陷、花萼/果梗、梨

S123;TN247(农业物理学)

“十二五”国家科技支撑计划资助项目2012BAF07B06

2015-03-25(万方平台首次上网日期,不代表论文的发表时间)

共6页

319-324

相关文献
评论
暂无封面信息
查看本期封面目录

农业工程学报

1002-6819

11-2047/S

2015,(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn